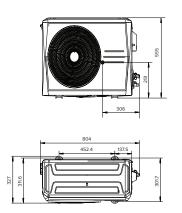
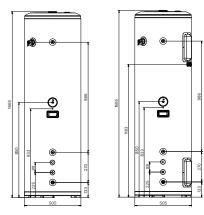
HEAT PUMPS - REFRIGERANT CYCLING

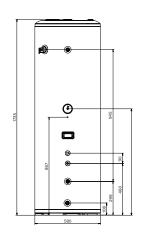
EMERALD HEAT PUMP AND TANK200L, 300L AND OPTIONAL HEATER

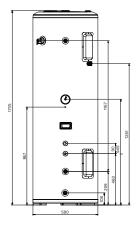
Emerald Energy's hot water heat pumps provide energy-efficient hot water all year round. Our refrigerant cycling heat pumps are available with an optional built-in electric heater to boost hot water supply when needed.


The refrigerant cycling heat pump's heat exchanger is in the water tank resulting in less energy use due to heat loss. It can also operate under lower outdoor temperature conditions.


FEATURES

- Optional built-in electric heater as backup
- Automatic startup and shutdown
- Four-way valve for automatic defrosting
- Anti-Legionella function
- Blue diamond enamel tank





EE-HWS-RCHP-200 EE-HWS-RCHP-200-1 EE-HWS-RCHP-200E EE-HWS-RCHP-200E-1

EE-HWS-RCHP-300-1 EE-HWS-RCHP-300E-1 EE-HWS-RCHP-300E-1

HEAT PUMPS - REFRIGERANT CYCLING

AUSTRALIAN ENERGY SAVING SCHEMES

Australian federal, state and territory governments have established energy-efficiency schemes to incentivise the adoption of smart technology solutions to help reduce energy usage and the carbon footprint of businesses and households across the country.

Emerald works closely with government agencies to ensure our products are at the forefront of energy-efficient technology, and aligned to the benchmarks set by the energy-efficiency schemes across Australia. Our hot water heat pumps are approved for installation within the following government schemes.

HIGH SMALL-SCALE TECHNOLOGY CERTIFICATES (STC)

Air Source Heat Pumps qualify for Small-Scale Technology Certificates (STCs) that encourage heat pump water heater installation. STCs can be traded on the Australian market based on their value, which is determined by the efficiency of the unit and the temperature zone in Australia. Each STC represents 1MWh of energy saved over ten years.

PEAK DEMAND REDUCTION SCHEME (PRC)

A Peak Reduction Certificate is a tradeable certificate created when an Accredited Certificate Provider undertakes activities that provide the capacity to reduce electricity usage during peak demand periods.

Heat Pump	Split System	Split System	Split System	Split System		
Size	200E	300E	200	300		
Model No	EE-HWS-RCHP-200E EE-HWS-RCHP-200E-1	EE-HWS-RCHP-300E EE-HWS-RCHP-300E-1	EE-HWS-RCHP-200 EE-HWS-RCHP-200-1	EE-HWS-RCHP-300 EE-HWS-RCHP-300-1		

CERTIFICATE VALUES																				
Residential Certificates	Z 1	Z2	Z3	Z 4	Z 5	Z 1	Z2	Z3	Z 4	Z 5	Z1	Z2	Z3	Z 4	Z 5	Z 1	Z2	Z3	Z 4	Z 5
STCs	22*	22*	26*	28*	28*	21*	21*	25*	28*	27*	22*	22*	26*	28*	28*	21*	21*	25*	28*	27*
ESCs (D17)			46.17		44.89			45.25		43.57			46.17		44.89			45.25		43.57
VEECs (1D)				20	20				19	19				20	20				19	19

Commercial Certificates (-1)	Z 1	Z2	Z 3	Z4	Z 5	Z 1	Z2	Z 3	Z4	Z 5	Z 1	Z2	Z 3	Z4	Z 5	Z1	Z2	Z3	Z4	Z 5
STCs	21*	21*	25*	28*	28*	20*	20*	24*	26*	26*	21*	21*	25*	28*	28*	20*	20*	24*	26*	26*
ESCs (F16)			128.47		91.84			118.88		82.30			128.47		91.84			118.88		82.30
VEECs (44B)				59	49				53	44				59	49				53	44

*All certificates have been calculated for the dates between the 1st Feb 2023-31st Jan 2024

*VEEC's & ESC's Commercial certificates have been calculated when installing a new water tank and replacing an electric resistance boiler/heater of a 3.6 kW (200L) and 3.1 kW (300L) capacity or greater in a metro area.

For residential installations, the existing system size is not included in the calculations

*STC certificates have been submitted to the CER and are waiting for final approval

HEAT PUMPS - REFRIGERANT CYCLING

BLUE DIAMOND ENAMEL TANK

Blue Diamond enamel technology ensures the surface is clean and smooth and reduces dirt from adhering - keeping the tank cleaner and more hygienic over time.

ANTI-LEGIONELLA FUNCTION

Disinfection temperature 60~75°C

Unit without electric heater:

Maximum disinfection temperature 65°C

Unit with electric heater:

Maximum disinfection temperature 75°C

Two disinfection modes available:

Periodicity automatically disinfect Manually disinfect

VENTILATION GUIDELINES:

Ideally, the heat pump should be installed outdoors. However, if it needs to be installed indoors, there are some possible issues to consider, and preventive measures should be taken.

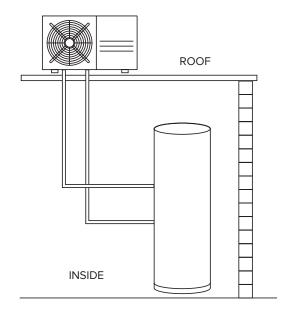
One potential issue with indoor installations is the risk of air recirculation. This can cause the temperature of the air in the confined space to gradually decrease, which can lead to a loss of efficiency and possible failure of the heat pump. It's important to monitor the air temperature in the space to make sure it doesn't drop below 5°C. Sufficient ventilation should be maintained over the lifetime of the heat pump to ensure its proper functioning.

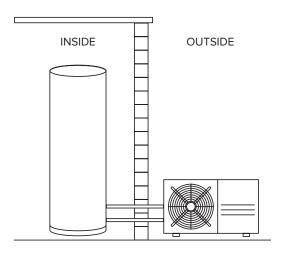
The below recommendations will help to prevent the drop in air temperature:

- Indoor areas with an air volume greater than 25m³ are suitable for indoor installations
- Areas smaller than 25m³ require cross ventilation. Cross ventilation can be achieved naturally or mechanically
- Natural ventilation is achieved if there are suitably sized openings on opposite ends of the enclosure providing cross ventilation
- If mechanical ventilation is provided via a supply or extract fan, then the minimum volume of air required is 1000 m³/h (278 L/s)
- For mechanically ventilated areas, a make-up air path is required. This can be in the form of grilles, undercut doors, open doors, open windows etc
- To achieve cross ventilation the location of the make-up air path should be on the opposite side of the enclosure to the fan

SPLIT SYSTEM DESIGN

Due to the split system design, the water tank and outer unit are separate units and connect by two refrigerant pipes.


The standard refrigerant piping length supplied is 2.5m. This will suit most applications, particularly residential installations.


For commercial applications the water tank and outer unit may require greater distances apart. The refrigerant piping lengths can be increased. See below requirments:

Maximum piping length: 20m

Maximum piping difference in height: 10m

If the piping length were less than 10m, no additional refrigerant charge is required. If the piping length exceeds 10m, then an additional refrigerant charge of 20g/m is required.

HEAT PUMPS - REFRIGERANT CYCLING

SPECIFICATIONS

		MODEL NUMBER		EE-HWS-RCHP-200	EE-HWS-RCHP-200E	EE-HWS-RCHP-300	EE-HWS-RCHP-300E					
		MODEL NOMBER		EE-HWS-RCHP-200-1	EE-HWS-RCHP-200E-1	EE-HWS-RCHP-300-1	EE-HWS-RCHP-300E-					
	Ambient tem	perature	°C	-15~46								
	Leaving wate	er temperature	°C	20~63								
	I I a ation or	Capacity ₁	W	2600								
	Heating	Input	W		100	00						
GENERAL	H	Hot water yield	m³/h		0.0441/	0.056 ²						
		Refrigerant piping	mm(inch)		Ø6.35	/ Ø1/4'						
	Refrigerant	Gas side	mm(inch)		Ø9.52	/ Ø3/8'						
	piping	Max. height difference	m		10)						
		Max. refrigerant pipe length	m		2	0						
		esign pressure	MPa	3								
	Outdo	or unit power supply	V/N/Hz	220-240/1/50								
		Max. current	А	4.4	13.5	4.4	13.5					
		Compressor	Туре	Rotary								
	_	Туре			A	C						
	Fan	Air flow (H/L)	m³/h	1250/769								
	Air si	de heat exchanger	Туре	Hydraulic aluminum fin + Inner grooved copper tube								
OUTDOOR		Throttle	Туре	Electric expansion valve								
UNIT	Outdoor	r sound pressure level	dB(A)	54								
		Unit dimension (L*W*H)	mm	804*327*555								
	B:	Packing dimension (L*W*H)	mm	845*390*610								
	Dimension	Net weight	kg		29							
		Gross weight	kg	32								
	D. C	Туре		R134a								
	Refrigerant	Charged volume	g		00							
		Tank volume	L	200	200	300	300					
	Electric	Capacity	kW	/	2.1	/	2.1					
INDOOR	heater	Power supply	V/N/Hz	220-240/1/50	220-240/1/50	220-240/1/50	220-240/1/50					
		Unit dimension(W*D*H)	mm	505*505*1665	505*505*1665	580*580*1735	580*580*1735					
UNIT	D:	Packing dimension(W*D*H)	mm	1775*635*590	1775*635*590	1835*690*670	1835*690*670					
	Dimension	Net weight	kg	73	73	96	96					
		Gross weight	kg	83	83	108	108					

^{1.} Ambient temperature 19/15°C(DB/WB), Initial water temperature 9°C, Terminative water temp. 60° C.